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Let X be a complex Banach space and L1(X ) :=L1(T; X ) the Bochner space on
the circle T. The X-valued Hardy space H1

0(X ) :=[f # L1(X ): f� (n)=0 \n�0] is
proximinal in L1(X ) if H has ARNP and is contractively complemented in X". It
is semi-Chebyshev if X is strictly convex. With H �(X$) the dual space of
L1(X )�H1

0(X ), extremal kernels and functions for this duality are studied.
Proximinality fails for X :=L1�H 1

0 ; this is equivalent to the assertion that for 4 :=
N_Z _ Z_N, L1

4(T2) is not proximinal in L1(T2). A class of subsets 4/Z2 is
described for which this non-proximinality holds. � 1996 Academic Press, Inc.

1. Introduction and Preliminaries

A classical theorem first proved in 1941 by Doob [Do, Theorem 3] and
reproved by many authors (Khavinson, see [Kh, 9.]; Rogosinski and
Shapiro [RS]; Pta� k, see [Khe]) states that H 1

0 :=[f # L1(T): f� (n)=0
\n�0] is a Chebyshev subspace of L1=L1(T), the Lebesgue space of the
circle group T. (A subset A of a metric space M is called semi-Chebyshev
resp. proximinal if for every x # M at most resp. at least one best approxi-
mation in A exists, and Chebyshev if proximinal and semi-Chebyshev, see
[Si2, Definitions 2.1, 3.1].) In other words, every coset in L1�H 1

0 contains
exactly one representative of the least possible (=coset) norm. Taking into
account the duality (L1�H 1

0)$=H � :=[h # L�(T): h� (n)=0 \n<0], this is
the solution of the following ``extremal problem'': given a ``kernel'' f # L1,
consider the functional h [ �T fh d* on H � (*=Haar measure) and find
uniquely an ``equivalent'' kernel f0 # L1 (i.e. giving the same functional,
� f0&f # H 1

0) with & f0&1 realizing the functional (=coset) norm. Such an
f0 is called an extremal kernel. A ``dual extremal function'' is a function
h # H � with &h&��1 and � fh d* realizing the functional norm; it also
exists uniquely. This theory is presented in detail in the books of Duren
[Du, Chapter 8] and Garnett [Ga, IV], and the first aim of this article,
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mainly part of the author's habilation thesis [H3], is to give a vector-
valued generalization (92). In 93 I discuss an example leading to a
proximinality problem in two-variable (scalar-valued) Fourier analysis
which might be of independent interest. A short summary of results is
postponed to the end of this section. For more details on the preliminaries
the reader is referred to [H3].

1.1. Spaces L1(X ) and M(X). Let X be a complex Banach space (dual
X$, unit ball BX ), then L1(X )=L1(*; X ) denotes the usual Lebesgue-
Bochner space [DU, II] and M(X )=M(7; X) the space of (_-additive)
X-valued measures of bounded variation defined on the Borel _-algebra 7
of T. Under the variation norm on M(X ), L1(X )/M(X ) isometrically
via f [ f } *, and Singer's theorem [Si 1, pp. 398ff.] states that
( f, m) [ � ( f, dm) is a dual pairing on C(T; X )_M(7 ; X$) rendering
M(7 ; X$) the dual space of (C(T; X ), & }&�).

1.2. L�(X$, X ), the Dual of L1(X ). A function f : T � X$ is called
weak*-*-measurable, if \x # X the function (x, f ): T � C is *-measurable.
For such a function, there exists | f | :=supx # B X |(x, f ) |, the supremum
being taken in the order-complete vector lattice L0(*; R) of *-measurable
functions modulo *-null functions [KA, p. 42f.]. Note that | f |(t)�& f (t)&X$

a.e. and the inequality may be strict. However, if X is separable, or if f is
strongly measurable, then | f | equals & f ( } )& a.e. (see [H3, 1.3]).

Define L�(*; X$, X) :=[f : T � X$ weak* measurable: | f | # L�(*)]
equipped with the seminorm & f&� :=& | f | &� , and finally L�(X$, X )=
L�(*; X$, X) :=L�(*; X$, X )�& }&&1

� (0).
For f # L1(X ), g # L�(X$, X ), the function ( f ( } ), g( } )) =: ( f, g) is a

well-defined (!) member of L1 and |( f, g) |�| f | | g | a.e. [H1, (0.5) 50].
Under the pairing ( f, g) [ � ( f, g) d* on L1(X )_L�(X$, X ), the space
L�(X$, X ) becomes the dual of L1(X ) (Bukhvalov [B1, Theorem 0.1],
Ionescu-Tulcea [IT, VII.4 Theorem 7, Corollary], Schwartz [Sc,
Corollaire (2.3)], see also [DS, VI.8.7]).

1.3. Hardy Spaces, ARNP. As a general notation, if E( } ) is any of the
spaces L1(X ), L�(X$, X), or M(X ) and if 4/Z, then E4( } ) is the subspace
of members of E( } ) whose Fourier coefficients vanish off 4. (If E( } )=
L�(X$, X ), the integral defining the coefficients is the Gel'fand or weak*
integral [DU, p. 53].) The Hardy spaces in this article are H1

0(X) :=L1
N(X )

resp. H�(X$) :=L�
N0

(X$, X ). The Banach space X has the analytic Radon-
Nikody� m property ARNP introduced by Bukhvalov and Danilevich [B1],
[BD], [H1] iff H1

0(X )=MN (X ) (see [H1, (2.10)]). The basic examples of
ARNP spaces are RNP spaces (because m # MN (X ) O mR* by the F. and
M. Riesz theorem [Du, Theorem 3.8]), weakly sequentially complete
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Banach lattices [BD, Theorem 3], [H 1, (3.5)], and preduals of von
Neumann algebras [HP, 2.3].

1.4. H�(X$) Is the Dual of L1(X )�H1
0(X ). Modulo general Banach

space theory [Du, Theorem 7.2] this amounts to saying that H�(X$)/
L�(X$, X )=L1(X)$ is the annihilator of H1

0(X )/L1(X ). Clearly the
annihilator is contained in H�(X )$. Conversely, let f # H1

0(X ), g # H �(X$)
be given.

Claim. ( f, g) # H 1
0 (in particular � ( f, g) d*=0).

Proof. Let Pr(t) :=�n # Z r |n|eint be the Poisson kernel, then as in the
scalar case, Pr V f � f (r � 1) in L1(X ) [B1, Theorem 2.1], [H1, Satz
(1.11)], f being strongly measurable. This implies \n # Z:

(Pr V f, g) 7 (n)=� (Pr V f (t), e&intg(t)) *(dt) � ( f, g)7 (n) (r � 1).

By [H2, 4.2] the integral equals ��
k=1 rk( f� (k), ĝ(n&k))=0 if n�0. K

1.5. Summary. H1
0(X) lies proximinal in L1(X ) if X has ARNP and is

norm-1 complemented in the bidual X" (2.1). The usual characterization of
extremal kernels and functions is given (2.3). The former is unique if X is
strictly convex, the latter if X is smooth and an extremal kernel exists (2.5).
In 93 it is shown that for X=L1�H 1

0 (which fails ARNP) H1
0(X ) is not

proximinal in L1(X ). This turns out to be equivalent to the assertion that
for 4 :=N_Z _ Z_N/Z2 the space L1

4(T2) is not proximinal in L1(T2).
The proof of this assertion (in fact, of a general criterion 3.3) consists of a
reduction to the fact stated by Kahane that if 1/Z with 1<*Z"1<�
then L1

1 (T) is not proximinal in L1(T). Since these seem to be the only
known examples of non-proximinal translation-invariant subspaces of
L1(T) (see [Ka]), this criterion might be interesting in itself.

2. Vector-Valued Theory

The theory developped in this section has useful applications in the study
of weak compactness in L1(X )�H1

0(X ) [H3, 3.6].

2.1. Theorem. If X has ARNP and is complemented in X" by a contrac-
tive projection then H1

0(X ) lies proximinal in L1(X ).

The hypotheses are satisfied e.g. if X is a separable (or RNP) dual space,
or a weakly sequentially complete Banach lattice, or a predual of a von
Neumann algebra (1.3), [LT, 1.c.4], [T, III.2.14].
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Proof. MN (X") is obviously closed in M(X") for the weak* topology
_(M(X"), C(X$)) (1.1), hence proximinal [Si2, Theorem 2.9]. Considering
(see 1.1) L1(X ) as a subspace of M(X )/M(X"), for a fixed f # L1(X ) there
exists m"0 # MN(X") with & f&m"0 &�& f&m"&, all m" # MN (X").

Let P: X" � X be a projection of norm 1, as assumed, and
m0 :=P b m"0 # M(X ); clearly m0 # MN(X ). By the ARNP hypothesis,
m0=h0 } * for some h0 # H1

0(X). Then for h # H1
0(X )/MN(X"), & f&h&1�

&f&m"0&�&P b ( f &m"0)&=&f&h0&1 . K

This proof is certainly the simplest (the slightly different approach of
[Kh, 9.], [Du, p. 130 f.] would also work).

Extremal Kernels and Functions

Consider the dual pairing (L1(X )�H1
0(X ), H�(X$)) which is of the form

(Z, Z$) (1.4) and thus mutually norming. Fix f # L1(X )"H1
0(X); the coset

f+H1
0(X ) of f in the quotient space will be denoted by [ f ] in the

sequel; [ f ]{0. Following Rogosinski, Shapiro [RS] and Duren [Du,
Chapter 8],

2.2. Definition. (1) f0 # L1(X) is called an extremal kernel for [ f ] if
f0 # [ f ] and & f0 &1=&[ f ]&;

(2) h0 # H �(X$) is called a (dual) extremal function for [ f ] if
� ( f, h0) d*=&[ f ]& and &h0&��1.

Thus, f0 should be an element of smallest norm in [ f ] whereas h0 is
required to be a support functional of [ f ].

Under the hypotheses of 2.1, f0 exists for every [ f ]. I will prove in 93
that without ARNP f0 need not exist. On the other hand, h0 of course
always exists by Hahn-Banach.

A characterization of the following type looks familiar in the theory of
extremal problems.

2.3. Proposition. Let f0 # [ f ] and h0 # BH�(X $) . Then f0 is an extremal
kernel and h0 a dual extremal function for [ f ] if and only if ( f0(t), h0(t)) =
&f0(t)& a.e. In this case, |h0 |(t)=1 a.e. where f0(t){0.

Proof. ``only if '' By hypothesis,

| | f0 | d*=& f0&1=&[ f ]&=| ( f0 , h0) d*

and &h0&��1; by 1.2, |( f0 , h0) |�| f0 | |h0 |�| f0 | a.e., thus ( f0 , h0) =| f0 |
a.e.

165VECTOR-VALUED (L1�H 1
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``if ''

&f0 &1=| | f0 | d*=| ( f0 , h0) d*

=| ( f, h0) d*�&[ f ]&&h0&��&[ f ]&�& f0&1 .

Last assertion: By 1.2 again, &f0(t)&=( f0(t), h0(t)) �& f0(t)&|h0 |(t)�
&f0(t)& a.e. and the last statement follows. K

2.4. Corollary. If X has ARNP and is contractively complemented in
X" then the set [h # H�(X$): |h|(t)=&h&� on a set of positive measure] is
norm dense in H�(X$).

Proof. Let h # H�(X$)=(L1(X )�H1
0(X ))$ attain its norm &h&� as a

functional on L1(X )�H1
0(X ) in some [ f ] # L1(X)�H1

0(X ), &[ f ]&=1. I claim
that |h|(t)=&h&� on a set of positive measure; the assertion then follows
from the Bishop�Phelps theorem [Di, p. 3]. For the claim, I can assume
w.l.o.g. &h&�=1. But then h is an extremal function for [ f ]. Choose an
extremal kernel f0 for [ f ]; this is possible by theorem 2.1. Now by 2.3,
|h|(t)=1=&h&� a.e. on the set of positive measure [ f0{0]. K

It can be proved that the conclusion of this corollary (due to Fisher [F,
p. 482] in the scalar case) holds also under the (incomparable) assumption
that X$ has ARNP [H3, Corollary 2.12].

2.5. Theorem (Uniqueness). (1) Let f1 , f2 # L1(X ) be extremal kernels
for [ f ]. Then

(a) & f1(t)&=& f2(t)& a.e.

(b) If X is strictly convex then even f1=f2 in L1(X ).

(2) Let h1 , h2 # H�(X$) be extremal functions for [ f ]. Suppose that
there exists (at least) one extremal kernel f0 for [ f ]. Then

(a) |h1 |(t)=|h2 |(t)=1 a.e. where f0(t){0.

(b) If X is smooth then even h1=h2 in H�(X$). (A Banach space is
called ``smooth'' if every point {0 has a unique support functional.)

Proof. (1.a) Choose an extremal function h0 # BH�(X$) for [ f ]. By the
proposition, ( f1(t)&f2(t), h0(t))=& f1(t)&&& f2(t)& # R a.e. Since the
lefthand side is a member of H 1

0 (1.4) is must be 0 a.e.

(b) It remains to prove f1(t)=f2(t) a.e. where f1(t){0{f2(t). For
those t, it follows from ( f1(t), h0(t)) =& f1(t)&=& f2(t)&=( f2(t), h0(t))
a.e. that f1(t)=f2(t) a.e., by strict convexity of X.

166 WOLFGANG HENSGEN
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(2.a) See Proposition 2.3.

(b) Again by Proposition 2.3, ( f0(t), h1(t))=& f0(t)&=( f0(t), h2(t))
a.e. Since f0{0 and X is smooth, this implies h1(t)=h2(t) on a set of
positive measure (for fixed representatives of h1 , h2 # H�(X$)/L�(X$, X )).
Therefore, if x # X is also fixed, (x, h1(t)) =(x, h2(t)) a.e., by the identity
theorem for H � [Du, Theorem 2.2]. This is the assertion. K

Remarks. (i) Trivial (two-dimensional) examples show that neither
extremal kernel nor function need be unique in general.

(ii) Part (1.b) says in other words that H1
0(X ) is a semi-Chebyshev

subspace of L1(X) if X is strictly convex.

2.6. Corollary. If X has ARNP and is complemented in X" by a con-
tractive projection then L1(X )�H1

0(X ) is smooth if (and only if) X is smooth.

Proof. Combine 2.5 (2.b) with 2.1. (The ``only if '' assertion is trivial
since X can be identified with a subspace of L1(X)�H1

0(X ).) K

3. Example and a Two-Variable Result

Without the ARNP assumption on X, H1
0(X) need not be proximinal in

L1(X ). Although this is not particularly surprising, I am working out an
example of this phenomenon, because I found the blend of harmonic
analysis and approximation theory needed to establish it rather appealing.

Note that L1�H 1
0 fails ARNP [BD, Proposition 4.3], [H1, 3.3] and is

contractively complemented in the bidual [A, Theorem 2], [Go1, p. 229 f].

3.1. Example. For X :=L1�H 1
0 , H1

0(X) is not proximinal in L1(X ).

This assertion is established in several steps. First, it is reduced to a
scalar problem in two variables, then further reduced to a minimal
extrapolation problem in one variable the answer to which is known. To
begin with, I have to consider several natural identifications in which }�
denotes the projective tensor product (see [DU, VIII.1.10], [Ko� ,
941.5(8)], [DS, III.11.16, 17] for justification): For X :=L1�H 1

0 ,
L1(X ) = L1 �� L1�H 1

0 = (L1 �� L1)�(L1�H 1
0) = L1(T2)�L1

Z_N (T2). Let
f # L1(T2) and F # L1(X ) the element corresponding to f+L1

Z_N(T2)
under this chain of identifications. Then for m # Z, X=L1�H 1

0 % F� (m)
= �2?

0 f (s, } ) e&ims ds�2? + H 1
0 , so that F� (m) = 0 # L1�H 1

0 � \n � 0:
�2?

0 �2?
0 f (s, t) e&imse&int(ds�2?)(dt�2?)=0. Altogether, F # H1

0(X) � F� (m)=0
\m�0 � \m�0 \n�0: f� (m, n)=0 � f # L1

N_Z _ Z_N(T2). In other words,
under the identification L1(X )=L1(T2)�L1

Z_N(T2) above, the subspace
H1

0(X ) identifies with L1
N_Z _ Z_N(T2)�L1

Z_N(T2). Now I use a result of

167VECTOR-VALUED (L1�H 1
0 , H �) DUALITY



F
ile

:6
40

J
29

21
07

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

16
:1

7
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

32
21

Si
gn

s:
23

49
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

Cheney and Wulbert [Si2, Theorem 2.20], saying that if U/V/W is a
chain of inclusions of Banach spaces, where U is proximinal in W, then V
is proximinal in W if (and only if) V�U is proximinal in W�U. Of course,
I want to apply this lemma to the chain of inclusions L1

Z_N(T2)/
L1

N_Z _ Z_N(T2)/L1(T2). This can be done because of the following
proposition.

3.2. Proposition. L1
Z_N(T2) is proximinal in L1(T2).

Proof. One of the applications of the Bukhvalov�Lozanovskii theorem
says that a subspace Z/L1(+) is proximinal if BZ is closed for the topol-
ogy of convergence in measure + (a finite measure) [BL, Theorem 1.6$],
[B2, Theorem 1.7], [KA, X.5 Theorem 5]; such a Z is called ``nicely
placed'' in L1(+) by Godefroy [Go1], [Go2] who observed that H 1

0 is
nicely placed in L1(T) [Go1, p. 230]. Therefore, it suffices to establish that
L1

Z_N(T2) is nicely placed in L1(T2). This is a special case of [Go2,
Theorem 2.7], or of the observation stated in [HWW, p. 200]: if Z is
nicely placed in L1(T) then L1(T; Z) is nicely placed in L1(T2). (A third
proof is given in [H3, p. 46]). K

By now it is established that the assertion of example 3.1 is equivalent to

3.3. Example. L1
Z_N _ N_Z(T2) is not proximinal in L1(T2).

This is obviously a special case of the following criterion. An affine
straight line in Z2 is a set of the form 2=Z(m1 , n1)+(m0 , n0) for relatively
prime m1 , n1 # Z and arbitrary m0 , n0 # Z; with a=&n1 , b=m1 , c=
am+bn0 , 2 has also the description 2=[(m, n) # Z2 : am+bn=c].

Theorem. Let 4/Z2, and suppose there exists an affine straight line
2/Z2 which intersects \4 in finitely many but at least 2 points. Then
L1

4(T2) is not proximinal in L1(T2).

Proof. I reduce the question to a one-variable problem by showing
that if L1

4(T2) were proximinal in L1(T2) then L1
1 (T) would have to be

proximinal in L1(T) for 1=Z"1$, 2�*1$<�, which is known to be
false [Ka, p. 303, 3.]. The idea of this reduction is easy: embed L1(T) into
L1(T2) ``along 2''. That is, with the data describing 2 as above, define
J : L1(T) � L1(T2), Jf (s, t) :=ei(m0s+n0 t)f (m1s+n1t). J is a (well-defined!)
isometric embedding onto L1

2(T2), and for (m, n)=k(m1 , n1)+(m0 , n0) # 2

(k # Z) the relation Jf@(m, n)=f� (k) holds ( f # L1(T)). Now let 1 :=
[k # Z: k(m1 , n1)+(m0 , n0) # 4]=Z"1$ with 2�*1$<� by hypothesis.
Then J maps L1

1 (T) onto L1
2 & 4(T2)=L1

2(T2) & L1
4(T2). The situation is

as follows:

168 WOLFGANG HENSGEN
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" "

L1
4(T2) / L1(T2)

_ _

L1
2 & 4(T2) / L1

2(T2)

J J

L1
1 (T) / L1(T)

3.4. Lemma. Consider the following diagram of Bananch spaces and
inclusions:

Y2 / X2

_ _

Y2 & X1=: Y1 / X1

Suppose there exists a contractive projection X2 �� X1 leaving Y2 invariant.
Then Y2 proximinal in X2 implies Y1 proximinal in X1 .

Proof. Trivial. K

The proof of Theorem 3.3 is finished by establishing

3.5. Lemma. There is a contractive projection L1(T2) �� L1
2(T2) leaving

L1
4(T2) invariant.

Proof. Define + # M(T2)=C(T2)$, +( f ) :=�2?
0 eic�f (a�, b�) d��2?, then

&+&�1 and +̂=12 . The sought projection is f [ + V f. K

3.6. Note. It has been said that if 1=Z"1$, 2�*1$<�, then it is
known [Ka, p. 303, 3.] that L1

1 (T) is not proximinal in L1(T). In other
words (see [loc.cit.]), the following discrete version of Beurling's ``minimal
extrapolation problem'' does not always have a solution: Given a function
. on 1$ of the form .=f� | 1$ for some f # L1(T), find a g # L1(T) of
smallest norm with ĝ | 1$=.. Kahane [loc.cit.] claims that . :=1 has no
such ``minimal extrapolation'' g. To see this, by an argument involving an
approximate identity for L1(T) (e.g., (Pr)r<1 , see [Sh, 7.3.6]) it is proved
first that &g&1=1, then assuming w.l.o.g. that 0 # 1$, it follows that g�0
whence ĝ is positive definite. However, by [R, 1.4.1(40)] any positive
definite function 9 on Z with 9 (0)=9 (k)=1 for some k{0 must be
k-periodic. Applied to ĝ, this contradicts the Riemann-Lebesgue lemma.

Note added in proof. Q. Xu observed that Proposition 3.2 follows also from Theorem 2.1,
taking X :=L1(T) there.
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